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Abstract

A general purpose data stream management system (DSMS) is used for event process-
ing over data streams. The events arrive in an on-line manner and must be treated
efficiently. In this project, the essential elements of queries for a DSMS have been
studied, leading to a query language that can handle a wide range of different queries.
Most important is the ability to easily express queries that have a sequential structure,
similar to regular expressions.

The focus of this thesis has been on processing queries that have such a sequen-
tial structure. In recent articles, a non-deterministic finite automaton (NFA) based
approach is used. A tree based model is also possible, which is described and analyzed.

The algorithms used for processing data must be optimized to be able to han-
dle the large amount of events. Optimizations using a lazy evaluation approach not
generating partial results, until they are expected to be used is described. An opti-
mization which, under the right circumstances, passes information between operators
can, in those cases, improve the throughput of the system.

The two models are compared theoretically, demonstrating that the tree based
model is at least as efficient as the NFA based model, along with an argument why
the NFA model is not efficient for queries without sequence.

A prototype DSMS has been implemented including both models and used to
experimentally test the difference between them. The results of the experiments
substantiate the theoretical results, and also show that the tree based model clearly
outperforms the NFA based model, when the time window of the query and thereby
the amount of valid data is large.
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Preface

A learning experience is one of those things that say, ”You know that thing
you just did? Don’t do that.”

Douglas Adams

During a whole year with a vaguely described project in an area of computer
science that is brand new (at least at the Department of Mathematics and Computer
Science in Odense) a lot of corners have been searched and a lot of blind alleys
visited. There have been detours towards geometric data structures, Bloom filters,
space complexity issues, and countless other topics.

The process has been allowed to go its own way, looking at more details in some
small subproblems, and the balance between relational and pattern queries sliding
towards pattern queries. A large part of the early work in this thesis was published
by Mei and Madden of M.I.T. in an article midway through, creating additional
pressure to come up with something new.

It has been a year with many learning experiences, and the result is now sum-
marized in this report. The reader is expected to know the basic terminology from
computer science, but is not expected to be an expert in event processing over data
streams. A basic knowledge from a course in databases would however be helpful for
the understanding.
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Chapter 1

Introduction

This chapter contains some applications of data stream management systems; the
motivation of this project. It also contains a short survey of previous work in the
area, in particular the material upon which is the basis of this project. Finally, it
includes a summary of this thesis’ contribution and an overview of the chapters.

1.1 Applications of Streaming Data

When data rates are too high to store in an ordinary database management system
(DBMS) in time to answer queries, or the queries are continuous, a data stream
management system (DSMS) is a solution.

A DSMS is only allowed to process a data event while it is in higher memory, once
the event has left higher memory it is not retrievable again. Some examples of usage
of a DSMS are listed here

Radio-frequency identification - RFID

RFID technology is used in a wide range of applications like product tracking, li-
braries, passports, transport payment, contact-less payment etc.. A general purpose
DSMS could possibly reduce the implementation cost of systems to handle these quite
different applications.

Financial applications monitoring stock-ticker streams

It is not difficult to imagine queries that could be posed in the stock market trading
business. Finding patterns where a stock has dropped in price over a time period,
but is changing is a simple example. Continuous monitoring is a necessity in such a
situation.

Network monitoring data

Queries detecting attempts of “denial of service” attacks in a network requires moni-
toring packages in busy networks continuously.
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Auction bids

An internet auction has the same characteristics as the stock-ticker stream. Updating
the highest bid in the correct order is a continuous process until the auction ends.

Soldier surveillance

If soldiers in combat missions were monitored, queries involving heart rate, respiration,
sweat production etc. could indicate if a soldier is experiencing too much pressure to
be able to act rationally. Patient surveillance is another example.

Publish/Subscribe systems

Publish/subscribe systems like RSS must filter a large stream of keywords to locate
the events that are relevant for a subscription. A subscription could be all blog entries
that contains the keywords: “Roy Williams”, “Dallas Cowboys”, and “NFL”.

Environmental sensor readings

With the recent development in sensor networks, sensor notes could be used for en-
vironmental monitoring, for example detecting forest fires in large areas. With the
large number of measuring points, and therefore an increased chance of error, a query
should detect if several nodes in the same geographic area would report unusual ac-
tivity.

1.2 Challenges

Continuous Queries

In an ordinary DBMS, a tree is built when a query is posed, and the root of the tree can
recursively ask for answers until there is no more data in the answer. The continuous
queries of the DSMS cause the time of data arrival to decide when an answer to a
query can be computed. This flips the direction of computation to bottom up, as
inputs arrive in the leaves and propagate results to the top gradually. To achieve
a better performance, it is important to minimize the computation of intermediate
results.

High Data Rates (and/or bursty)

In many of the applications where a DSMS is used, the rate of input is simply too high
for updating a DBMS. Time critical queries would not be answered in an acceptable
time period. A patient surveillance system would not be successful, if the time period
before detection of a heart failure would be just a few minutes.
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Results being out of date

In queries calculating an aggregate over a time window, a result can time out, when
the event gets too old. This situation can be predicted. However, a result previously
produced can become invalid, when a new event arrives. A simple example of this is
with aggregate operators, the maximum of an attribute in a stream of events could
potentially be invalidated immediately after the result has been output if another
event comes with a higher value.

1.3 Assumptions

Data does not arrive out of order

If data arrives out of order, this could cause generated results to be invalidated:
The pattern that the query is searching for and output may not be valid if an event
suddenly arrives that is placed in the middle of the pattern time-wise. If the data
experiences slack, but the slack is bounded, this could be solved by preprocessing the
data (and increase latency). This is not treated in this project, so an assumption is
that data arrive in the correct order according to the end timestamp. The sequence
join operator described in section 3.4 is optimized based on this assumption.

If two events have the same timestamp, the one arriving first in the input queue
would be considered as earlier than the second, creating a total ordering. This has an
effect when considering queries for patterns that are not allowed to skip any events,
see section 2.1.5.

CNF without OR

The predicates involved in the queries are expected to be written in conjunctive
normal form (CNF), and each clause is a single predicate without the use of OR. OR
can be implemented as a post processing technique, creating two results and filtering
doublets away. This is not considered in this thesis.

Regarding pattern queries, the left operator in a predicate is expected to match
the event in a pattern. If two events are involved, then the left operator is expected
to match the event that occurs first in the pattern. This is a trivial task to check
and in case it is not fulfilled, then reverse the predicate. In a non-prototype system
type-checking and weeding of queries would be implemented, but this has not been
implemented in the work described in this report.

Output format

Some systems perform only event detection and output only that a match has occured.
In this work event finding is essential, outputting not only that a result is available,
but what the result is. This includes the possibility of outputting several results on
one input.

It is also assumed that answers are exact, and not just an approximation. This
imply that no events can be left out of the processing, regardless of the load on the
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system.

1.4 Previous Work

A survey of work done prior to 2003 in the area of relational queries for data stream
management can be found in [17]. It describes nine academic projects including
STREAM, Aurora, SASE+ and TelegraphCQ .

The STREAM system[3, 5] from Stanford University uses the CQL[4] query lan-
guage for relational style queries. The STREAM system uses adaptive algorithms for
ordering of pipelined operators [7], to minimize processing cost. The CQL language is
an SQL based syntax that can express continuous queries over streams and relations
on disc. A library of queries written in CQL are available on the web [26].

The Aurora[1] project from Brandeis University, Brown University and M.I.T.
express relational queries by dragging around boxes, representing operators, in a GUI
based query system.

At University of California, Berkeley [6] presents work on adaptive query process-
ing for shared-nothing databases. This made the foundation for the TelegraphCQ
system[9], which in part is based on PostgreSQL version 7.3. The TelegraphCQ sys-
tem handles relational queries.

The NiagaraCQ system [10] from the University of Wisconsin-Madison focus on
internet data and a large number of queries, grouping queries to share memory and
CPU cost. Their goal was to create a distributed database system for XML data and
XML based query language.

At Cornell University [14, 13, 12], they have worked on the Cayuga algebra used
in an NFA based system for pattern queries in publish subscribe systems. An exten-
sion of their work have been carried out by researchers at University of Massachusetts
Amherst[2] extending the NFA with an event buffer at each state, and using this model
in the SASE+ system[29, 15]. Further more, they are especially considering perfor-
mance and runtime complexity along with several different contiguity requirements.
A description of this work is found in section 2.3

Mai and Madden of MIT have with their ZStream [23] used a tree based evaluation
model for pattern queries. They present an algorithm for calculating an optimal tree
structure based on cost model analysis. This work was published halfway through
this thesis, at a time where a tree based evaluation for pattern queries had been
implemented and was under study. Parts of Mai and Maddens work is presented in
chapter 3. The work presented in this report differs by considering some optimizations
trade-offs, makes a more thorough comparison between the NFA based and tree based
models, and considers different contiquity constraints in the tree based model.

Later in this thesis, more related work is referenced where it is relevant.

1.5 Contribution

The main contribution of this thesis is a thorough comparison of the NFA based and
tree based approaches for finding patterns in streaming data. Using a tree for pattern
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matching was developed and under study before [23] was published.
It is shown theoretically that the NFA based model is not suited for non-pattern

queries, but more importantly a tree based approach could at least match the perfor-
mance of the NFA and in many cases perform substantially better.

A prototype implementation has been done, and a series of experiments have been
performed that substantiates the theoretical results. It is shown that when queries
have large time windows, which is not an uncommon setting for processing data
streams, then the tree based approach is notably better.

Several optimizations for general and specific cases have been suggested. These
have been implemented and tested, showing promising results.

1.6 Thesis Outline

In Chapter 2, the components of queries for streaming data are outlined along with
the design choice for the query language used in this thesis. Chapter 2 ends with a
description of the NFA evaluation model for pattern searching, and some questions
that should be answered in relation to this model.

Chapter 3 contains operators for the tree model for query evaluation of two dif-
ferent query types and a way to construct trees for both of them. Optimizations for
the tree based evaluation model are described in chapter 4.

In Chapter 5 theoretical considerations on which model to use and comparison of
the NFA and the tree model is performed, along with cost model analysis.

Experiments comparing the two models and showing the effect of the optimizations
are placed in Chapter 6, and Chapter 7 contains the conclusion and suggestions for
further work.

The appendix contains an analysis of an optimization for a left-deep tree based
model.
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Chapter 2

Data Model and Query Model

This chapter will start out with a description of the different elements that should be
included in the query language. Some design choises for the language developped are
stated, and the language is described along with some example queries.

The NFA evaluation model are described, as this is a common model used for
pattern searching. This model will be used for reference and comparison in the later
chapters. The chapter is concluded with a description of some limitations to the NFA
evaluation model.

2.1 Components of Queries

In this project, queries are divided into two groups: Pattern queries and relational
queries. Pattern queries specify an ordering or sequence of the events that are in-
volved. Relational queries are those without a specific sequence of events.

The reason for creating a new language is that none of the existing languages
studied supports both pattern queries and relational queries. Also not all languages
supports different contiguity constraints. First a description of the elements that
must be taken into consideration when designing a syntax.

2.1.1 Timestamp and Time Windows

When queries are continuous, time windows must be present in order to prevent
overflow in memory usage. If no time window is present, a join must store all relevant
events generating an indefinite data size.

Different strategies could be used when considering time. Should the user supply
time or should it be the arrival time in the queue? Here, In order for the user to have
full control, the events must be time stamped upon entering the DSMS. This have
another positive effect, suppose a user would rather consider the last x events instead
of the events occurring within the last y seconds. The user could then “timestamp”
the events with one second between each, and let the time window of the query be x

seconds, then exactly x events would be legal in the time window.

Several articles are treating time windows. [1] treats it in the Aurora system, [18]
studies join algorithms for time windows, and time windows in general are handled
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Id Stream Time

a S3 20

b S2 40

c S1 60

d S3 80

Table 2.1: Inputs to demonstrate the need for two timestamps.

in [22].

It is necessary to have a starting and ending time for events, in order to be able to
use output from one query as input for another. With this possibility, nested queries
can be expressed using several queries. The next example also show why double
timestamps are preferable.

Why a single timestamp is not enough

This is most easily described using an example. Consider a query which must join
events coming from three input streams: S1, S2, and S3, and the inputs from table
2.1.

If input from S1 and S2 are joined first, this will produce an event containing b

and c. If the timestamp for this event is selected to be in the interval [40− 50], it will
erroneously be able to join with a, and if the timestamp is in the interval [50− 60] it
will erroneously be able to join with d. Two timestamps denoting the beginning and
the end of an event are therefore necessary to compute the correct results.

2.1.2 Aggregate Functions

The well known aggregate functions Min, Max, Count, Sum, Avg should be considered
when making a general purpose DSMS. Interpretation of these depends on the query
type.

In pattern queries, the aggregate function would be calculated over the events
that are included in a Kleene plus operation. One result would be generated for each
time a series of events match the pattern in the query.

In relational queries, the aggregate function would be evaluated over all the events
that satisfy the predicates within a time window. If this is made completely continu-
ously, problems with invalidation of already outputted results arise. A result can be
equipped with an expiration time that invalidates the result, i.e. when the event that
generated the result times out from the time window of the query. However, often it
is not possible to predict the exact expiration time. As an example, the average of an
attribute will change as an event gets too old and is invalidated in the time window,
but also as soon as a new event arrives making the previous outputted result invalid.
Golab and Özsu presents different solutions to the problem in [20].

One solution for the problem of output becoming invalid is to use sliding windows,
i.e. calculate the aggregate functions over a fixed time interval, sliding with a (pos-
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sibly) different time window than the entire query. An example could be calculating
the average hourly sale for a series of cash registers, but outputing the results once
every 15 minutes. Each incoming event would then affect four time windows, making
it possible to update those four time windows upon arrival of events, and when time
is up, output the result and advance the window.

Just as with normal time windows, the slide can be made with number of events,
if only the input it timestamped with one second between each. With just a small
preprocessing making a conversion to timestamps, is it possible to use any attribute
with a total ordering.

Should the input of data be irregular, then the aggregate functions would not be
able to know the current time, making punctuations or heartbeat events a necessity
in order to output results at the appropriate times.

Heartbeat Events

Heartbeat events act as clock ticks. There are a number of obvious sources for the
heartbeats to come from, some are mentioned here, and more can be found in [27].
[27] also describes how punctuations can be used as assertions on input, relevant for
when slides can be made. Heartbeats used in a special join type are treated in [16].

Source or sensor intelligence The source producing the data may have enough
knowledge to supply the heartbeats, especially if the events are produced di-
rectly, since this would require time-stamping them.

Knowledge of access order If an event stream is produced by a scan or a fetch
from data stored on disc or the like, the information needed to produce heart-
beats may be present here. This could come from an index.

Auxiliary information If n sensors should report data, a list could be updated,
and the heartbeat sent when all sensors have responded.

Internal information Even if an event is not matched by any operator, it still
contains the current timestamp, and could be a source of a heartbeat.

2.1.3 What is Included From Where

A DSMS could potentially handle inputs from many different sources, just like a
DBMS can handle inputs from many different tables. The inputs should therefore
have a label to identify the stream it is coming from, and in order for queries only
to consider relevant input streams. If data for a query is coming from more than one
stream, it is necessary to join the input streams.

When considering pattern queries, the structure of the pattern must be specified:
How many events are included in the pattern, and are any of the events allowed to
be repeated (Kleene plus). When using pattern queries, it must therefore be specified
which events in a pattern comes from which input stream.

As in DBMS, not necessarily all attributes of a join of relations are needed in the
output. This calls for a projection-like operator that can filter out only the needed
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attributes of the output result. If the all operator * is used in a pattern query, then
the output will be an event with a list containing the events included in the pattern.

2.1.4 Selection Predicates

We must be able to consider different types of predicates. The notation for a predicate
is as follows: (left, relop, right) where left is a stream with an attribute or a pattern
event with an attribute, relop ∈ {=, ! =, <,>,≤,≥} and right can be a value, a
stream with an attribute or a pattern event with an attribute.

Naturally the predicates can be divided into categories as described below.

Static predicates A predicate is denoted static if it only involves one event. An
example could be (a.price,=, 42).

Parameterized predicates A predicate is denoted parameterized if it involves events
from more than one stream or two events from the same stream. An example
could be (a.price < c.price)

Relative to Last predicate When using the Kleene plus operator, this type of
predicate can be used to compare an event to the previous event in the pattern.
Example: (a.price[i−1] < a.price[i]) for a strictly increasing sequence of prices.

Other predicate types are possible, having events relate to other than the last
event in the kleene plus sequence, using aggregate functions in predicates, a partition
operator etc. but these have not been considered in this work.

2.1.5 Selection Strategy

The selection strategy is only applicable to pattern queries. It decides the condition
for contiguity, i.e. is it allowed to skip any events in the input sequence. Three
strategies are described here, including a few remarks on their complexity.

Strict No events can be skipped from the streams involved in the query. If the query
does not contain any Kleene plus’, then each intermediate result will either
match the next event and grow longer or not match and could be removed.

In this situation, there is only a linear number of intermediate results possible,
independent of the number of active events in a time window. However, if the
query contains Kleene plus, there could be a polynomial number of intermediate
results bounded by the number of active events in the time window.

Skip till any Any event can be skipped in the sequence. This also means, that any
partly matched pattern from the start of the pattern could be continued.

If the length of the pattern is n and the number of events arriving in the time
window is k, an arriving event could: 1) Start a new pattern by matching a1. 2)
For each existing partial match create a new partial pattern. Assuming every
event matches as the next event in all partially matched patterns, the number
of partially matched patterns would be O

(

nk
)

. This also holds if the pattern
involves Kleene plus.



2.1 Components of Queries 11

Skip till next Only skip irrelevant events. Relevant in the sense that a partition
operator must be present, and irrelevant are all events that do not belong to
the partition. Considering a stock exchange example, wanting the name of
any stock with strictly increasing prices over a time window, partitions are
determined by the name, and an event is only relevant for one partition, being
irrelevant for all others. As no partition operator is considered in this project,
neither is this strategy.

The complexity of the selection strategies is comprehensively described in [2].
From the complexity of the strategies, the exponential complexity of the skip till any
strategy is most difficult to deal with, and the focus of the present work has therefore
been to optimize this strategy.

2.1.6 The Query Language

Query languages for both relational and pattern based queries have a lot of similarities,
as described above.

It would be advantageous if the output stream can be used as an input for other
queries, and for this to be possible, the outputted events must have a stream label,
which should be set from the query. The requirements for a query language can
therefore be summarized as:

· Output label, if the output should be used as an input.

· Which input streams should be considered.

· Size of the time window in the query, and if aggregate operators are used,
possibly a length of the slide.

· Predicates for event selection.

· What attributes of the selected event that should be outputted.

· A pattern structure, if it is a pattern query.

Given the above constraints, the query language is defined to be
<Output stream label> :

SELECT <Projection criteria>

PATTERN <Pattern structure>

FROM [ RANGE <time window> SEC SLIDE <slide time> ] : <Streams>

WHERE <selection strategy> [predicates]

where the optional parts are the first line defining the output stream name, the third
line if it is not a pattern query, the SLIDE <slide time> from the fourth line and
the selection strategy from the last line. If no selection strategy is marked, the strict
is set as default.

The <Streams> part must be a list of streams separated by ; if it is a relational
query, or a list of streams with the events from the pattern that belongs to each
stream.

An example of a relational query with aggregates and sliding window is
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Query 1

S1: SELECT SUM(price) , MAX(price)

FROM [RANGE 10 SEC SLIDE 5 ] S1

WHERE S1.name = "IBM"

and an example of a pattern query with Kleene plus is

Query 2

SELECT *

PATTERN ab+c

FROM [RANGE 2 SEC] S: a,b,c

WHERE SKIP TIL ANY(a,b,c) {
a.name = "IBM" AND b.name = "Sun" AND c.name = "Oracle"

}

2.2 Definitions and notation

Definition 1 (Event). An event e 〈s, τstart, τend〉, where s is a mapping from a schema
to corresponding values and τstart, τend is the beginning and ending timestamps of the
event.

Definition 2 (Tuple). A tuple t is a collection of non-overlapping events each having
a type from the pattern it belongs to. The tuple also has beginning and ending
timestamps.

Definition 3 (Stream). A stream S is a (possibly infinite) bag (multi-set) of events,
ordered so the τend’s of the events are non-decreasing.

In this project, a stream is expressed as e1e2e3 . . . This definition differs slightly
form the definition in [4], since a single timestamp is not enough, if the output of
queries is to be used for input to other queries. See section 2.1.1 for an elaborate
explanation.

Definition 4 (Pattern). A pattern is a sequence of non-overlapping events from one
or more streams. An event in the pattern can have requirements to single attributes,
and the events can have requirements to attributes between them.

A pattern can include a Kleene plus, which allows several events fulfilling the
requirements to be included in the solution of pattern.

A pattern is written as a1a2a3. . . an or a1a2+a3. . . an if events matching the second
event in the pattern are allowed to be repeated.

Definition 5 (Initial event). An event matching a1 in a pattern is called an initial
event.

Definition 6 (Triggering event). An event matching an in a pattern is called a
triggering event.
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Definition 7 (Selectivity). If the percentage of events accepted by a predicate is
small, it is called highly selective or having low selectivity

Definition 8 (Throughput). Throughput of the system is calculated as the number
of events processed each second, when the system is not idle and waiting for events
in the process. The measure is events

second

Definition 9 (∈R). When a value is chosen uniformly at random from a set, ∈R

denote this.

2.3 Pattern Query Evaluation with NFA

This section describes the NFA model for pattern matching in event streams, as
described in [13, 2].

2.3.1 NFA Model Description

The model consists of a NFA, where with each state a buffer for events are attached.
The structure of the NFA is determined from the query. The building of the struc-

ture is illustrated by example from the pattern ab+c, and the skip till any selection
strategy.

The starting state is labeled with the first character from the input, a with a
forward pointing begin edge. The edge points to the next state, which is labeled b[1]

as the b from the input is followed by a Kleene star. This state has a forward pointing
begin edge to a state labeled b[i], which has a looping take edge. From this state, a
forward pointing proceed edge, that is nondeterministic (ε), points to the next state
labeled c. From this state a begin edge points to the accepting state (F). Since we are
allowed to skip any events in the sequence, the states between the starting and the
accepting state are equipped with a looping ignore edge. The structure can be seen
in figure 2.1

a b[1] b[i] c F
begin begin proceed beginbegin

ignore ignore ignore

take

Figure 2.1: A sample NFA for the pattern structure ab+c with the skip till any
selection strategy.

If the selection strategy is strict, no ignore-edges are necessary, but they could be
included and just evaluated to false. It is clear that a mixed strategy is possible, i.e.
part of the pattern is strict and part of the pattern are allowed to skip events, since
this depends only on which ignore edges exist (respectively evaluates to true).
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2.3.2 Allocating predicates to the edges

The predicates of the query must be assigned to the edges in the following way.

Static predicates

A static predicate must be assigned to the begin edge of the corresponding event, and
if there exists a loop edge on this too.

Parameterized predicates

A parameterized predicate cannot be evaluated until the last of the two events occur
in the pattern. The predicate should be assigned to begin and forward edges going
into states corresponding to the last occuring event in the predicate. If the state has
an take edge, then the predicate must be assigned this edge too.

Relative to Last predicate

Predicates of this type should be assigned only to the relevant take edge. On the
take edge, the configuration is guaranteed to have at least one event of the same
type included, from the previous begin edge (or if the take edge already have been
followed).

2.3.3 Configurations and Using the NFA

When using the model, and an event arrives for processing, the forward edge from the
starting state is examined, and if it matches, the event is added to the buffer in the
first state, and a new configuration is created. A configuration consists of the current
state, a version number, a pointer to the most recent event in the configuration, the
starting time, and a summary of the values that are included in the partial match to
speed up predicate evaluation.

For all existing configurations, the incoming event is checked on all outgoing edges
from the configuration,s current state. If an ignore edge exists, the configuration is
kept as is. If a take edge exists and evaluates positively, the event is added to the
configuration, and if a begin edge exists and evaluates positively, the event is added
to the configuration and the current state is updated. If more than one of the above
edges evaluate positively, the configuration must be copied before the second update.

The summary in the configuration should contain the values needed to evaluate
predicates later in the pattern, saving time especially if the predicate involves an
aggregate.

Once all configurations have been examined, output can be generated from the
configurations that have an accepting current state, and those can then be removed
from the list of configurations.
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2.3.4 Version Numbers and Buffers

When an event is added to a buffer in a state, it is assigned a pointer, with a version
number, to the event previously seen in the pattern. The local identification number
is used to check if the event is already added to the buffer, and to identify which
events belong to a configuration.

The version numbers for the pointers and configurations are of the form id1(.idi)
∗

where id1 is the local identification number from the first state, and idi is the local
number from the ith following buffer. Note that two identification numbers can be
identical without referring to the same finished tuple, if the NFA have two take edges
in different states, and the two configurations skip events in different states. This is
not a problem, as the version numbers are implemented using the local number and
a pointer to the prefix of the number. From this, they can easily be separated.

2.3.5 Generating output from a Version Number

Once a configuration has reached the accepting state, it indicates that a match for a
pattern has occurred. The configuration contains a wrapper with the last event and
a list of previous pointers for events preceding in some pattern. In order to create
the right pattern, it must backtrack to the first event in the pattern and build the
pattern on the way back. Following the previous pointers to earlier wrappers that
corresponds to the version number, the first event is found when a wrapper’s previous
pointer list is empty indicating this is the first state.

2.3.6 Limitations of the NFA Evaluation Model

The NFA evaluation model for pattern queries assumes that all the events are from
one stream or a union of several streams, which means joins of multiple streams are
not considered. If data arrives from several streams this partition should be exploited.

The NFA evaluation model is radically different from the one used in traditional
DBMS and DSMS systems. A natural question to ask is: Is this radical change
necessary? Can non-pattern queries be evaluated with this model or can we use
the traditional evaluation model, i.e. a query plan organized as an operator tree, to
efficiently evaluate pattern queries? How is such an approach compared to the NFA
approach? Which one is more efficient?

Another potential benefit of using the traditional evaluation model is the ability
to evaluate the queries with both relational joins and sequence pattern matching in
a uniform manner. In other words, no need to handle the awkward combination of
NFA and trees of join operators. Taking this into consideration, can the performance
benefit of the NFA model justify such additional complexity into a DSMS? These
questions are considered in the following chapters.
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Chapter 3

Evaluating Pattern Queries with

Operator Trees

The idea for using a tree structure for the DSMS comes naturally from how SQL
queries are executed in a DBMS. Given an SQL query, the query engine of a DBMS
will generate a tree-shaped query plan composed by various operators. The query
results can be requested from the root node of the operator tree and the request
will be propagated to the other operators in a top-down manner. In a DSMS, data
is only accessible for a short period while in memory, so immediately after the tree
is built, it is not possible to generate results, as the data has not arrived yet. As
queries are continuous, the trees are used over a longer period, and the generation of
results must start from the leaves, since they “know” when data is available. Since
the root is unable to tell when results are present, it is the leaves that must initiate
the production of resultst when data arrives.

This chapter will outline two different plans for generating results, the operators
used in the trees and how trees are built.

3.1 Propagation Plan

The NFA model described in section 2.3 produces the first part of a pattern as soon
as it is possible. Such eager strategy is applicable with evaluation trees too: as soon
as a sub-result can be produced, it is propagated to the parent. This will be called
the push-based propagation plan.

The pull-based evaluation plan adopts the typical lazy evaluation strategy. Figure
3.1 shows a sketch of an evaluation tree. Assume that subtree T3 cannot generate any
results. If this is the case, it is clear that no results can be produced from the entire
tree. Since no results can be produced, there is no reason to evaluate the results in
the subtrees T1, T2, and T4 as this would be a waste of energy, if the intermediate
results would timeout before being used. A lazy strategy where the root of a subtree
can pull the results when needed seems to be possible. This technique for propagation
is called the pull-based propagation plan.

Section 4.1 describes advantages and disadvantages of the two propagation plans
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in more detail, but this introduction was needed to understand the operators used in
the tree.

T1 T2 T3 T4

Figure 3.1: A tree where T3 cannot produce results, to demonstrate why the pull-
based plan could be beneficial.

3.2 Common Operators

The operators used in both the relational model and in pattern queries are described
here.

Selection

The selection operator handles only the static predicates. If the incoming event
satisfies the predicate, it is passed on to the selection operator’s parent, if not it is
discarded.

Aggregate Operator

The aggregate operator must initialize the memory for the sliding windows, depending
on the number of slices the total time window is divided into. It is responsible for
propagating an event once time for a slice has expired, and thus handling the heartbeat
events that carry only timestamp information.

If no events or heartbeats have arrived in more time than two slices, it must output
events for both slides in the window and advance the window accordingly.

Input

Besides being an entry point for data, the input operator checks if the event input
matches the Stream it is supposed to come from. If the event does not match, there
is no need to pass it on to the parent.

Output

The output operator is a placeholder for the output stream. When a dynamic tree
structure is used, this will be the root, that has the dynamic part of thetree a child.
It has it has no influence on the output of the query, except it assures that all output
events have the correct label.
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3.3 Operator for Relational Queries

In order to process input from more than one stream, a join operator is necessary.
Many of the join algorithms known from from relational data queries are inapplicable
in the data stream setting. Examples are joins that use some kind of partitioning or
sorting, as the data involved is dynamic. The join algorithm presented below is a very
simple algorithm, and optimizations are possible. It is included here only as a proof
of concept example, to show that algebra trees in fact can be applied to relational
queries on streaming data. Several papers describes solutions to this, among those
[3, 9, 18, 19, 28].

Join

The join operator creates a new event from two input events from different streams.
It handles the parameterized predicates that relate different streams.

Due to the on-line nature of the problem when two streams must be joined, it is
necessary to store the events that are not outdated in the current time window from
both input streams. If not it would be impossible to decide if an input from one of
the streams would match a previous input from the other stream. Algorithm 1 shows
the join.

Algorithm 1: Join algorithm for relational queries

Input: Event e, child location t

removeOutdatedEvents (e.end)1

if t == left then2

foreach Event er in right input list do3

if Time constraint and join condition are satisfied then4

newEvent← Event created by merging of e and er5

parent.inputEvent (newEvent, parentType)6

place event in left input list7

else8

foreach Event el in left input list do9

if Time constraint and join condition are satisfied then10

newEvent← Event created by merging of el and e11

parent.inputEvent (newEvent, parentType)12

place event in right input list13

Projection

The projection operator takes as input an event. It then creates a new event and
adds only the selected attributes from the incoming event. The new event is passed
on to the parent.
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3.4 Operators for Pattern Queries

Sequence Join

Due to the fact that the operator tree can have different shapes, the sequence join
operator must be able to handle inputs both as simple events and as tuples. Deter-
mined by the selection strategy and the propagation strategy the operator must act
accordingly.

Inspired by the version number concept described in section 2.3.4, when a tuple
is constructed from another tuple, it does not copy the list of ids and events, but just
a reference to the old tuple. A new summary table is however created from the old.

Algorithm 2 shows how event input is treated. The child location parameter
indicates if the input comes from the left child or the right child. If the input comes
from the left child, no tuples can be generated, since there are no events that have
arrived after the end timestamp of the event. If it comes from the right child, tuples
are pulled from the left child if needed through the getTuples method (algorithm
3). The getTuples method uses the return list as a parameter, so no copying of
tuples are necessary. A very similar algorithm for tuple input exists, but is omitted
from this report.

The removeOutdatedEvents removes events and tuples from the input queues
that are too old, i.e if now − beginT imestamp > TimeWindow.

The getTuples algorithm (algorithm 3) is not as comprehensive as a first glance
may indicate. At most one of the outer loops (line 8 and 15) will have any elements,
and at most one of the inner loops (line 9,12,16 and 19) will have any elements (unless
the pattern includes a Kleene plus, see below). This stems from the four combinations
of event and tuple input, where the sequence join is in one of these configurations. It
should also be noted that if all events match, the number of outputs is O

(

n2
)

, and
the algorithm is asympthotically optimal in the worst case.

Kleene Plus

Handling Kleene plus is actually a part of the sequence join operator, but for clarity it
is described separately. Only the sequence joins with inputs as events must handle the
Kleene plus. If the language had been extended to include paranthesis with Kleene
plus, thus allowing repetition of more than one event, then the internal sequence joins
should have handled it. This has not been studied, but is listed as a topic in future
studies.

How Kleene star is treated depends on it belonging to a left or a right input.

Kleene Plus is left input Must generate the Kleene plus tuples before matching
with the right input.

Kleene Plus is right input Store a copy of the event passed on to the parent in
the left input (Tuple) list. This enables the operator to add another event to
the end of the tuple.
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Algorithm 2: Sequence join algorithm for event inputs.

Input: Event e, child location t

removeOutdated(e.end)1

if t == left then2

place event in left input list3

return4

else5

if propagate then6

if left child does not propagate then7

getTuples(leftTupleInputList)8

foreach Event el in leftEventInputList until9

el.EndT ime ≥ e.startT ime do
if Time constraint and join condition are satisfied then10

newTuple← Tuple created from el and e11

parent.inputTuple(newTuple, parentType)12

foreach Tuple tl in leftTupleInputList until13

tl.EndT ime ≥ e.startT ime do
if Time constraint and join condition are satisfied then14

newTuple← Tuple created from tl and e15

parent.inputTuple(newTuple, parentType)16

else17

place event in right input list18

Kleene Plus is left and right input Kleene stars right after each other should be
handled differently, so the sequence of the input is not mixed. Thus, a check
must be performed before inserting from the left, that a right input is not the
last in the pattern. Alternatively use a separate list to the events that have only
events from the left input, and tuples that already have events included from
the right input.

Buffer

In order to be able to rebuild a tree, where the intermediate results are discarded, the
inputs must be buffered for the current time window. This buffering also allows the
estimation of the optimal tree to use the size of the buffer as a measurement of the
size of the input.

Tuple to Event Converter

Internally, the query evaluation tree for patterns handles tuples but must output
events. This conversion can be considered as an operator in itself or placed in the
output operator as an added functionality. It is quite similar to the projection opera-
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Algorithm 3: GetTuples algorithm used with the pull evaluation strategy.

Input: ResultList l , Timestamp now

removeOutdatedEvents(now)1

if ¬ left child propagate then2

leftChild.getTuples(leftTupleList , now)3

if left tuple and event input list are empty then4

return5

if ¬ right child propagate then6

rightChild.getTuples(rightTupleList , now)7

foreach Event er in rightEventList do8

foreach Event el in leftEventList until el.end ≥ er.start do9

if Time constraint and join condition are satisfied then10

list.append(Tuple created from el and er)11

foreach Tuple tl in leftTupleList until tl.end ≥ er.start do12

if Time constraint and join condition are satisfied then13

list.append(Tuple created from tl and er)14

foreach Tuple tr in rightTupleList do15

foreach Event el in leftEventList until el.end ≥ tr.start do16

if Time constraint and join condition are satisfied then17

list.append(Tuple created from el and tr)18

foreach Tuple tl in leftTupleList until tl.end ≥ tr.start do19

if Time constraint and join condition are satisfied then20

list.append(Tuple created from tl and tr)21

Empty rightTupleList and rightEventList22

tor, creating a new event with the specified attributes. The difference is that it must
locate the correct event in the pattern first, i.e. if b.type is what is needed, the event
in the tuple that corresponds to b should be found first.

If the pattern contains a Kleene plus, then sum(b.price) would be a meaningful
projection criteria, and here all events matching b must be considered, making the
functionality similar to an aggregate operator.

3.5 Building the Tree

The evaluation tree is built differently depending on the type of query type (relational
or pattern based) and if a dynamic or static structure is desired.
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3.5.1 Relational Tree

For relational queries, a simple (unoptimized) way of building an evaluation tree is
to first make a left-deep tree with joins of the different input streams, specified in the
FROM part of the query, and then add selection operators above the input operators
for the static predicates, and place the parameterized predicates in the joins, at the
lowest place possible in the tree. The Stanford STREAM system [3, 4] has excellent
solutions to this problem with well documented optimizations, as does the Aurora
system[1] and others.

Figure 3.2 shows the tree corresponding to query 3. The reason for the last stream
in the query being the lowest is due to the parser building lists in backwards order.
An optimized version would try to find an optimal join order, but this has not been
pursued in this project.

Query 3

SELECT S1.price

FROM [RANGE 5 SEC] S1 ; S2 ; S3

WHERE S1.name = "IBM" AND S2.name = "Sun" AND S3.name = "Oracle"

AND S1.price < S2.price AND S2.price < S3.price

Output operator

project [price]

select S1.name = IBM

Input: S1select S2.name = Sun

Input: S2

select S3.name = Oracle

Input: S3

Join S3.price ¡ S2.price

Join S2.price ¡ S1.price

Figure 3.2: Sample tree for query 3

3.5.2 Static Structure for Pattern Query

A static structure has little overhead, i.e. no checking if the structure is optimal.
There are however inputs that cause a static structure to perform poorly.
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The first tree built in this project to handle pattern queries was the static leftmost
tree. The leftmost tree resembles the NFA as will be described in section 5.2.1, and
while working with the leftmost tree, the push and pull plans were developed along
with other optimizations. The leftmost tree can be built in the following way (quite
similar to the relational tree).

Start by making an input node from the last event in the pattern. Going backwards
in the pattern, creating input nodes for each and keeping track of the two next, make
a sequence join node with an input as a right child and a join as a left child, until
there is only one event left in the pattern. This is then placed as left child in the
lowest join. After the basic structure is created, the static predicates are inserted
as selection operators just above the input operators, the parameterized predicates
added to the sequence join nodes, and an output operator attached as root, which
also handles turning the tuple into an event using the SELECT part of the query.

3.5.3 Dynamic Query Plan for Pattern Queries

The dynamic structure described next comes from [23], which was published during
the course of this thesis. The contribution in this section is therefore “filling in the
blanks”.

The optimal shape of an evaluation tree will depend on the selectivity of the
predicates and the rate of arrival, which is impossible to predict. An informed guess
based on the data already seen can however be made. Algorithm 4 uses dynamic
programming to make such a guess. Using a structure of the tree that can be rebuilt
if needed, the inputs at each leaf must be stored, so intermediate results that are lost
during rebuilding can be regenerated, which is where the buffer operator is relevant.

The initialization and purpose of the tree matrices are:

Min[x][y] Minimum estimated price for evaluating a tree of size x starting from
position y. The matrix must be initialized with ∞.

ROOT [x][y] Calculated optimal location of the root in a subtree of size x starting
from position y. Initialization is not important, as it only stores information
needed for building the tree later.

CARD[x][y] The expected output size of the output for a tree with size x starting
from location y. The first row of the matrix must be initialized with the expected
number of inputs in a time window for the event matching the location in
the pattern. After the tree has been active for the first time window, this
information can come from the buffer operators.

The algorithm runs in O
(

n3
)

, if the getSelectivity does constant work, in
terms of the length of the pattern. It will of course depend on the number of pa-
rameterized predicates, as they determine the selectivity. See section 3.5.4 for a full
description of getSelectivity.

Once algorithm 4 has calculated the optimal tree structure, the recursive algorithm
5 returns the root when called with arguments buildTree(root, 1, n, root[n][1]), and
n being the length of the pattern.
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Algorithm 4: Searching for optimal tree structure

Input: Number of event classes n

Output: buffer ROOT recording roots of optimal subtrees
Initialize two dimensional matrices Min, ROOT , CARD1

for s← 2 to n do2

for i← 1 to n - s +1 do3

for r ← i + 1 to i+ s do4

opc← CARD[r − i][i] ∗ CARD[s− r + i][r] ∗ 0.55

cost←Min[r − i][i] + Min[s− r + i][r] + opc6

if Min[s][i] > cost then7

Min[s][i]← cost8

root[s][i]← r9

CARD[s][i]← opc∗getSelectivity (i, i + s− 1, r)10

3.5.4 Calculating selectivity in the root of a subtree

A parameterized predicate is relevant for a join operator in a tree, if it has all the
information needed to evaluate, and cannot be evaluated in one of the subtrees of
the join. If the inputs are numbered from 1 to n, a predicate can be denoted as
[start, end] where start is the leftmost input that is involved in the predicate, and
end is the rightmost input involved. A subtree handling inputs a to b with root at
the rth position can be described as an interval [a, b] with a point r ∈ [a, b]. The root
position r is the location of the leftmost leaf in the right subtree. When calculating
the reduction factor for a root in a subtree, all reduction factors for the predicates
that satisfy the following constraints should be taken into consideration.

· The predicate interval should be included in the subtree interval. If not, the
subtree will not contain the necessary inputs for the predicate to be evaluated,
and is therefore not relevant at the root.

· The point r should be located in the predicate interval. If it is not, then the
predicate could be evaluated in one of the subtrees, thus lower in the tree, deem-
ing it irrelevant for this root position. However, this should already be taken
into consideration when computing the input size from the relevant subtree.

In algorithm 4 O
(

n3
)

calls to getSelectivity with different parameters for each
calculation of optimal shape could occur. Two solutions for the problem of locating
the relevant predicates will be described here and compared after their description.

Solution using Range Trees

With the conditions described in the previous section, the problem can be rephrased
as a geometric problem in the following setting. Let the predicates be points in a
plane located at (start, end), and the subtree interval [a, b] with the point r be the
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Algorithm 5: Building optimal tree structure from root matrix

Input: Roots matrix, start index start, end index end, root position root

Output: Root operator
if end− start == 1 then1

return new sequence join with children buffers at start and end in list2

if root− start > 1 then3

left← buildTree(matrix,start, root− 1,matrix[root− start][start])4

else5

left← buffer at start in list6

if end− root > 0 then7

right← buildTree(matrix,root, end,matrix[end− root + 1][root])8

else9

right← buffer at end in list10

return new sequence join with children left and right11

problem of finding all points in the plane that are located in the axis aligned rectangle
with x-coordinate interval [a, r[ and y-coordinate interval [r, b]. The root r cannot
be included as the right endpoint in the x interval, as it would include predicates
that could be evaluated in the right subtree (from the definition of root position).
Figure 3.3 shows the geometric situation where there are three predicates (1, 2),(2, 4),
and (4, 5). Note that (1, 2) should be evaluated in the left subtree, (4, 5) in the right
subtree but (2, 4) in the root of the subtree that the problem describes.

0 1 2 3 4 5 6
0

1

2

3

4

5

6

b

b

b

Figure 3.3: Geometric interpretation of finding predicates relevant for subtree with
inputs 1 to 5 and root in 3.

Letting m denote the number of parameterized predicates, a solution using interval
trees with fractional cascading[11] and the parameterized predicates as data points
can be made in time O (log m + k) where k is the number of relevant predicates
(output size) using size O (m log m) and using O (m log m) time for preprocessing.
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Solution using larger preprocessing and more space

Using O
(

n3
)

space and more time spend on preprocessing the parameterized predi-
cates, a solution with no unnecessary searching at each call to getSelectivity can
be constructed.

Algorithm 6: Preprocessing parameterized predicates

Input: Number of event classes N
Output: buffer ROOT recording roots of optimal subtrees
Initialize three dimensional matrices reduction with empty lists1

foreach Parameterized Predicate p do2

pl← left endpoint of p3

pr ← right endpoint of p4

for start← 1 to pl do5

for end← pr to n do6

for r ← pl + 1 to pr do7

add p to list in reduction[start][end][r]8

Once algorithm 6 has run, all predicates relevant for a node being a root in a
subtree can be located, as they are in the cube. Only predicates that must be included
in the calculation of the selectivity are considered, thus the processing being optimal
O (1 + k), when no approximations are used.

The drawback of this solution is the O
(

n3
)

space requirement for the cube, and
a precomputation cost of O

(

mn3
)

. A comparison of the two solutions can be found
in table 3.1. If only a limited number of rebuild are made, the solution using range
trees should be chosen, due to the limited preprocessing, but if rebuilds are frequent
(Ω (m)) or the query is running for a long time, then the enlarged preprocessing would
be offset. Due to the small problem size, it is probably less important which solution
is used.

Range Trees Preprocessed Cube

Preprocessing O (m log m) O
(

mn3
)

Size O (m log m) O
(

n3
)

Single evaluation O (log m + k) O (1 + k)

Total for rebuild (O
(

n3
)

) calls O
(

n3 log m + n3k
)

O
(

n3 + n3k
)

Table 3.1: Comparison of the two solution methods for finding relevant predicates
for a root in a subtree. Here m is the number of predicates, n is the length of the
pattern, and k is the size of the output.
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3.5.5 When should Rebuilding Happen?

Checking if the current shape of the tree is optimal takes time, so checking too often
will be too expensive, especially if it is not necessary to rebuild. On the other hand,
checking too infrequently would waste time and work, using a tree that is shaped in
a way that generates too many unusable sub-results.

Elements that have an effect on the optimal shape of the tree are:

Selectivity of the parameterized predicates If the selectivity of a parameter-
ized predicate changes, then it will affect the output of the sequence join oper-
ator that evaluates it. This causes the number of propagated results to change,
which could change the cost of the tree. If the sequence join operator is al-
ready placed near the leaves and the selectivity drops, it would probably be
unnecessary to rebuild the tree, as the shape would still be optimal.

Number of inputs in a time window When the number of inputs for one of the
leaves changes in a time window, the number of possible outputs from the
sequence join that handles the input will also change. This change can arise from
a change in the speed of data arrival or from the nature of the data changing,
so the selectivity of the static predicate in the selection operator lower in the
tree changes.

Total saving Rebuild should only happen if the total saving is large enough to cover
the cost of rebuilding. There could easily be a situation where the input from one
of the leaves increases, but the selectivity of a predicate in the lowest sequence
join that handles this input decreases, so the shape of the tree is still optimal,
or the savings from rebuilding to a different shape tree would be too small
compared to the time spend rebuilding and recalculating intermediate results.
The total evaluated cost of a tree should therefore also have a threshold, so no
unnecessary rebuilding happens.

The parameters p for single predicate threshold, i for input size threshold and t

for total tree threshold are related as can be seen in table 3.2.

t
High Rarely calculate, often

rebuild
Often calculate, often
rebuild

Low Rarely calculate, rarely
rebuild

Often calculate, rarely
rebuild

Low High
p and i

Table 3.2: Relation between threshold parameters for rebuildning.

When the time window of a query is increased, it will contain more results before
they time out (assuming the same input speed). This will intuitively also produce
more intermediate results that would be discarded in case of a rebuild. One method
could be to let the time between checking for optimal shape depend on the length
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of the query. This method of implementation is used in this thesis. Other solutions
could be checking once a fixed number of events have occured, once a fixed time
interval has passed, or checking part of the tree for every input.
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Chapter 4

Other Optimizations

The content of this chapter present possibilities for optimizations of the tree model
described in chapter 3 especially for pattern queries. First, an elaborate description
of the propagation plans briefly presented in section 3.1. Secondly, a few observations
that can save some work. Finally, the pass-down optimization which can be used in
certain cases, passing information on to an earlier part of the pattern.

4.1 Push-based and Pull-based Propagation Plan

In the article by Mei and Madden, [23], a batch of events is collected before processing
of them begins. This could potentially give a higher latency than processing any event
as soon as it arrives. In the pull propagation plan, a batch type of approach is used,
but the size of the batch is defined by the length between triggering events. As soon
as an output could be produced, the tree starts processing.

Looking at figure 4.1, the empty subtree T3 would prevent any results from being
generated, but how are empty subtrees detected? This poses a challenge since there
are n − 1 subtrees overall: All sequence join operators are root in a subtree. Using
the pull propagation plan this search is not done explicitly, but only when there is a
chance a result can output from the whole tree.

T1 T2 T3 T4

Figure 4.1: Tree with empty subtree to demonstrate why the pull-plan could be
beneficial.

If there is no triggering event matching the last event in a pattern, there is no
chance of a possible output, and no reason to pass anything on to the parent. If how-
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ever a result is being produced this must be input to the parent. Applying this prin-
ciple recursively, the operators on the entire rightmost path must propagate results
whenever possible. All other sequence join operators can utilize the pull propagation
plan and only evaluate results when asked to do so.

If the length between triggering events is smaller than the time window of the
query, no intermediate results would time out before they would have been used to
match something in a pattern, and the push propagation plan could equal the pull
propagation plan.

This lazy evaluation technique can also be applied to relational queries, but the
advantage of its use has not been tested in this project.

The next observation will prevent input to the rightmost operator, if there is no
chance of being able to generate output, thus limiting the chance of a triggering event.

4.2 Input only to relevant operators

From the start of the matching process, there is no need to try to match anything
but the first event in the pattern until an initial event has been seen. After this,
there is no need to try to match a3 until something have matched a2 etc. This can
be generalized, when the skip till any selection strategy is used, to whenever an input
buffer becomes empty in a time window, there is no need to try and match any later
events in the pattern.

In the dynamic tree, there are buffers storing inputs for the rebuilding process,
so for the operators located lower in the tree than these buffers (the input operator
and the selection operator) must therefore pass on this information from the buffer
operator. Particularly if the static predicate does not match the input, the selection
operator must ask the buffer operator to discard events that are outdated from the
timestamp of the event not matched, and answer if the buffer has become empty.

4.3 Do not Pull when it is not needed

If the event selection strategy is the skip till any and the pull plan is in use, one
input event can propagate several result tuples to the parent operator. If the parent
receives this input from the right child, and the left child is a subtree with the pull
plan, there is no need to pull results for each of the inputs received, as they have the
same end timestamp.

If the sequence join operator stores the ending timestamp of the last time it
pulled results from a child, it can avoid the method call to (getTuples) that would
not generate results anyway.

If events are input with the same ending timestamp, this does not conflict with
this optimization. Events must be strictly non overlapping, and events with the same
ending timestamp do not fulfill this requirement, so it would be impossible to generate
results with the events pulled.
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4.4 Passing Down Events and Predicates

This technique was developed at the time, when only the static left-deep tree was
used to match pattern queries. First, a short motivating example for using pass-down.
Assume a left-deep tree for the pattern a1a2 . . . an using the pull based propagation
plan and there is a predicate p := (ai, op, an), and the frequency of events matching
an is low1. Note that the type of the operator is not limited to equality, as it is when
hash tables are used for optimization. Once an input event e arrives that matches an,
results are pulled from the left part of the tree, including all possible partial matches.
At this time, the events in the input queue for ai could be filtered, since they must
be accepted by the predicate involving e.

If the sequence join that handles ai would know p and e, it could skip propagating
results that would be filtered out, when they reach the sequence join that handles an.
Passing down p and e when making the pull would enable this filtering. The lowest
part of the tree handling a1 . . . ai−1 is pulled normally, but the the remaining results
are built and passed on in a separate list, not influencing the input buffers of the
sequence joins. The technique is named pass-down when referenced in the remaining
part of this thesis.

An analysis for a left-deep tree can be found in appendix A showing when it is
beneficial to apply the tecnique.

4.4.1 Not a left-deep tree

The principle is very simple when the structure is the left-deep tree, as all sequence
joins from the root and down know if asked to match ai and it is not the right input,
then ai is located in the left subtree. With the adaptable tree, there are a few more
cases to consider.

An essential observation is that ai will be in a left subtree of a sequence join on
the rightmost path, as the only input located on the rightmost path is an and i 6= n.
The rightmost sequence join can apply the pass-down procedure using algorithm 7
on itself, called with a list containing the incomming event as a tuple matching an.
Once the left child that contains ai is found, the results generated are input to the
parent as usual, as these tuples are just a standard match to the sub-pattern ai . . . an.
The passUp algorithm (algorithm 7), uses the pass-down algorithm (algorithm 8) for
those sequence join operators not placed on the rightmost path in the tree.

An important difference from the left-deep tree is that the parameterized predi-
cate, relevant for passing down, is not necessarily located in the sequence join that
process an. This predicate must, when the tree is built, explicitly be placed there
instead of in the sequence join higher in the tree that ordinarily would contain it.

4.4.2 Frequency of Triggering Events

Why should the frequency of triggering events be low? When using the pass-down
procedure, not all subresults are produced, and since it is not registrered which are,

1The time between events that match an is greater than the timewindow in the query.
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Algorithm 7: PassUp algorithm, for sequence joins on rightmost path.

Input: List list, Predicate p, Event e

if left input is only ai then1

match events from left input with Tuples in list using p and e and input2

generated tuples normally to parent
return3

if left child contains ai then4

leftlist← leftChild.passDown(e,p)5

match events in leftlist with events in rightlist and input normally to6

parent
else7

pull normally from left child and store events in left input list8

build list newList storing partial results for left inputs matched with9

events from list

parent.passUp(newList,p,e)10

those intermediate results must be discarded so no doublets suddenly present them-
selves when the next triggering event arrives. Should two triggering events arrive in
the same time-window, the subresults not produced by the arrival of the first of those
events could have been used to match results for the second.

Should more than two triggering events arrive in a time-window, the subresults
will be missing only once, as when the second arrives in a time-window the complete
pull is made in the tree. The worst case scenario is therefore using twice the work.

4.4.3 Several possible predicates

If there are more predicates satisfying the format (ai, op, an) which one should then
be selected? There are two factors that influence this decision.

Selectivity The selectivity of the predicate clearly influence the gain. If the selec-
tivity is 1, then no partial results are dropped, and the pass-down technique is
useless. If the selectivity is low, many partial results are discarded early, and
do not propagate, making the gain high.

Length between i and n If i = n − 1 nothing is saved, as all intermediate results
are produced and skipped at the same time, as if the pass-down technique was
not used. The earlier ai appears in the pattern the better, since fewer useless
intermediate results are produced from the ones that are skipped.

The exact tradeoff between the two parameters is not clear, but this could be a
topic for future research.

4.4.4 Correctness of results

In order to argue correctness, all results must be produced, and no invalid results
including doublets can be produced.
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Algorithm 8: PassDown algorithm, for sequence joins not on rightmost path.

Input: Predicate p, Event e

if left input is only ai then1

pull results from right child if needed and store events in right input list2

match events from right input with events from left input that satisfies p3

with e and store result in list l

return l4

if right input is only ai then5

pull results from left child if needed and store events in left input list6

match events from right input that satisfies p with e and left input and7

store result in list l

return l8

if left child contains ai then9

leftlist← leftChild.passDown(e,p)10

pull results from right child if needed and store events in right input list11

match events in right input list with events in leftlist and store result in12

list l

return l13

else14

rightlist← rightChild.passDown(e,p)15

pull normally from left child if needed and store events in left input list16

match events in rightlist with events from left input list and store result in17

list l

return l18

The pass-down procedure uses the entire tree to generate results for the incomming
event matching an, so all results should be generated with this event being the last.
Since only outdated events are removed, when performing the pass-down procedure,
no events are missing for a later attempt to produce results. The buffers in the
remaining tree will be left as if the passing down was not active.

Since the last event in the pattern is used immediately, no duplicate patterns will
ever be produced, as only a new event matching the last in the pattern can initiate
another output.
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Chapter 5

Analytical Comparison

The first argument of this chapter is one of the best arguments for using a tree-based
query plan to handle pattern queries, on the way to a DSMS that can efficiently
handle both relational queries and pattern queries, namely that an NFA is not a good
choice for relational queries.

This chapter also contains an analythical comparison of the NFA based model and
the tree based model for pattern queries, and finally it has cost model considerations
for the shape of the tree.

5.1 Evaluating Relational Queries with NFA

Can a NFA based model be used for evaluating relational queries?
Assume we have a relational query like query 4.

Query 4 Relational query to argue NFA’s are not usable for this query type

SELECT *

FROM [RANGE 10 SEC] S1 ; S2 ; ... ; Sn

WHERE ....

Since the NFA model only uses loop and forward edges, but the query does not
specify any ordering. Even when merging identical suffix’ of partial results, the num-
ber of states required is n to partial matches of length 1,

(

n
2

)

states to match partial
matches of length 2,

(

n
3

)

states to match partial matches of length 3, and so on. The
number of states needed totally is at least1 the sum of a row in Pascal’s triangle:

n
∑

i=0

(

n

i

)

= 2n

The number of edges going forward will be:

n−1
∑

i=0

(

n

i

)

· (n− i)

1States generated by a Kleene plus operator is not included in the argument.
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since all states corresponding to a length i must point to n− i new states. This sum
is by symmetry in the pascal triangle equal to

n
∑

i=1

(

n

i

)

· i

adding both sums results in

n ·

n
∑

i=0

(

n

i

)

dividing by two the number of edges is at least n · 2n−1.
Having both an exponential number of states and edges in the number of input

streams, the use an NFA for relational queries has not received further attention in
this thesis.

5.2 The NFA model compared to the tree model

First, the NFA model will be compared to a left-deep tree with the push plan to show
that they work in a similar way. Then the left-deep tree is compared to an optimally
shaped tree to show that a different shape is sometimes better. These two results
combined prove that it is better to use a tree for pattern queries than a (simple)
NFA.2

5.2.1 The NFA model compared to the Left-deep tree with the push

plan and skip till any selection strategy

The left-deep tree with the push plan have some glooming similarities with the NFA
model. Both use an eager evaluation technique and both generate results from the
start of the pattern to the end.

The settings are: Assume a1a2 . . . an is the pattern with possible Kleene plus’
that the query specifies and that the skip till any event selection strategy is used. In
the NFA model, upon input of an event, all active configurations are evaluated, as
well as the possibility of starting a configuration from the initial event. This includes
evaluating predicates on the edges in the state of the configuration and possibly
creation of new configurations (if more than one edge evaluates to true). Work is
defined as creating new tuples and evaluating predicates.

Proposition 5.2.1. The left-deep tree with the push propagation plan does at most
as much work as the NFA model for pattern queries with the skip till any selection
strategy.

To show this proposition, two lemmas are needed.

Lemma 5.2.2. The sum of left inputs in all the sequence joins are the same as the
number of configurations in the NFA model.

2If several NFAs are combined, each computing a part of the pattern, this can possibly change
this result, but no such work has been published to my knowledge.
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Proof. If the NFA model starts a new configuration, the event inputted must match
the static predicates on a1, and the tree will place the event in the left input of the
lowest sequence join. Any configuration in the NFA in the second state, must have
matched some events. This event must have matched in the tree too, generating a
new tuple that has been input to the left buffer of the second lowest sequence join.
This principle can iteratively be done for the following states/sequence joins.

A Kleene Plus will not affect the preceding argument, as once the NFA follows
the take edge, the tree model will add an input to a left buffer in the sequence join
itself or its parent. �

Lemma 5.2.3. The tree at most evaluates the left inputs once, and not more than
that.

Proof. Since we are considering the skip till any case, we can easily see that if the
NFA has a configuration in the ith state, it must have a configuration in each of the
previous, as it could just have skipped the last event in the configuration. Only if
the first event in the pattern times out, these configurations will be removed. The
same principle applies to the left-deep tree: It can input the event until it reaches a
sequence join that does not have any left input and skip the remaining as no inputs
can be located there. �

Proof of proposition 5.2.1. Let con denote the number of configurations in an NFA
and let lef denote the sum of the number of left inputs in the left-deep tree. Lemma
5.2.2 establishes that con = lef . Lemma 5.2.3 argues that each left input in the
tree model is evaluated at most once, and this includes the relevant predicates which
baring the structure must be the same as in the NFA model, so work spent evaluating
con ≤ work spent evaluating lef . Lemma 5.2.2 used inductively also demonstrates
that the tree creates the same number of new left inputs (outputs of the child sequence
join) as the NFA creates new configurations. �

Can the tree then be more efficient than the NFA?

The left-deep tree can potentially save some work compared to the NFA based model.
If a static predicate evaluates to false before reaching a sequence join, all the left
inputs in the sequence joins are not considered. For each of them, the NFA will have
to evaluate the static predicate (a partition of the configurations into states, so static
predicates can be evaluated for each partition, could possibly be an optimization of
the NFA model).

The NFA model is only described with inputs being non-overlapping, thus having
only a single timestamp. Unless the NFA model is modified with a partition on
time, it must examine all active configurations upon input, where as the tree in each
sequence join can potentially stop once the starting timestamp of the new event has
been surpassed by the end timestamp of the event in the left input.
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5.2.2 Better shape than left-deep for the tree model?

Assume a pattern a1a2 . . . aiai+1 . . . an, and let i =
⌈

n
2

⌉

using the skip till any event
selection strategy and having a predicate (ai, op, ai+1) which is highly selective.

The NFA (and the left-deep tree) will in this setting generate half the pattern
before being able to evaluate this predicate and hold the configurations in the corre-
sponding state until they timeout.

Consider the tree in figure 5.1 and the pull propagation plan.

T1 T2

anai ai+1

T3 T4

Figure 5.1: Tree with empty subtree used to demonstrate why the pull-plan can be
beneficial.

In this setting, once a triggering event arrives, the sequence joins on the path in
the dotted box are pulled for results, until the join that handles ai and ai+1 which
in most cases will return no results, causing the tree to not pull results from the
subtrees T1, T2, T3 and T4. Assuming the subtrees T2, T3 etc. each have roughly half
of the inputs in their subtree, the path in the dotted box will have logarithmic height,
so the number of joins visited in an attempt to produce results can in this case be
logarithmic compared to the linear number of states visited in the NFA model.

It is evident from this example that the predicates can have a large influence on
which tree shape will be optimal. Proposition 5.2.1 argues that the left-deep tree is
at least as good as the NFA for evaluating pattern queries, and this example showing
that, in some cases, a different shape is better than the left deep, the NFA would not
be the best choice for pattern queries.

5.2.3 The NFA model compared to the Left-deep tree with push

plan and strict selection strategy

Assuming that the strict selection strategy is used, the NFA can now have states that
have no active configurations between those that have active configurations, as the
NFAs ignore edge will evaluate to false and not leave a copy of all the partial matches
in the early states. However, since the length of the pattern is constant, n, the two
models will, when an input arrives, both check if the input matches a1 and match the
incoming event against all partial results. The tree model, not knowing which joins
have empty left inputs, could check n − 1 sequence join operators with extra. This
being constant work, the two models will perform asymptotically the same.



5.3 Cost Model Observation for Dynamic Tree 41

5.3 Cost Model Observation for Dynamic Tree

This is an on-line problem, as the total data set is unknown at the time of processing.
This also makes it impossible to know the optimal shape of the tree for the input yet
to come, but a reasonable estimate is a shape optimal for the input already seen.

In order to be able to evaluate which shape of a tree is better than another, we need
a more formal definition of work done. The work done evaluating static predicates
and buffering the input for rebuilding will be the same regardless of the optimal shape
of the tree. This cost is therefore omitted. The shape that can change is the way the
sequence join operators are combined into a specific tree shape, the work that must
be included is therefore the work done in the part of the tree that are composed by
sequence join operators.

We estimate the work in a sequence join operator as:

cost(op) := |left input| ∗ |right input| ∗
1

2

where the 1
2

comes from the time constraint that one event must come before the
other. This is a loose approximation, as they could be overlapping.

The size of the input from left or right must be within a specified time, and the
natural choice is the size of the time window defined in the query. If the input comes
as events, then the size can be measured from the buffer storing events for rebuilds.
If, however, the input comes as tuples, the child must be a sequence join, and the size
of the input can be estimated by the size of the output of the child:

output(op) := |left input| ∗ |right input| ∗
1

2
∗ selectivity(op)

The 1
2

again comes from the time constraint. The selectivity of the operator is
calculated by the relevant parameterized predicates, where relevant is described in
section 3.5.4. It is calculated as:

selectivity(op) := 1 if ∄ relevant predicates

and

selectivity(op) :=
∏

p∈ relevant predicates

selectivity(p) if ∃ relevant predicates

.

The cost for a tree now be defined as the

cost(T ) :=
∑

op∈sequence joins in T

cost(op)

5.3.1 Optimality of subtrees

In order to argue that a tree has an optimal structure, a small lemma from [23] is
needed.
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Lemma 5.3.1. If a tree has the optimal shape, so will all subtrees

Proof. Assume we have an optimally shaped tree T with a non-optimal subtree Tr

with the cost of the subtree cr. Let the cost of an optimally shaped subtree T ′

r with
the same nodes as Tr be c′r. Since the new subtree is optimal, we have that c′r < cr,
and the cost of a new tree T ′, made from T with the subtree Tr replaced by T ′

r, will
now also have lower cost than T , contradicting the assumption that T was optimal. �

5.3.2 Total tree evaluation

Lemma 5.3.1 claims that the problem of finding the optimal tree shape has optimal
substructures. If all possible tree shapes are tested, then a small subtree would occur
in several of these shapes, so the problem also has overlapping subproblems. These
are the conditions for using dynamic programming to try all legal tree shapes3.

Algorithm 4 uses dynamic programming to calculate the optimal tree structure,
by calculating the optimal shape of all subtrees of size 2, 3, . . . n, registrering where
the root is placed in the best solution.

The change in the algorithm from [23] is the parameters to getSelectivity,
where Mei and Madden only supply the root. This is not enough information to
establish which predicates are to be evaluated in the root of the subtree in question.
Not knowing the the size and which inputs are included in the tree could cause the
wrong parameterized predicates to be included in the calculation, either inclusion of
predicates that cannot be evaluated, or predicates that are already evaluated in a
subtree and thus generate a non-optimal tree shape.

3A tree shape will be legal, if the inputs for the leaves are in the correct order in an in-order
treewalk.
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Chapter 6

Experimental Work

This chapter begins with a presentation of the technical details for the equipment
used in the experiments. The focus is on how the NFA based model and the tree
based model perform on pattern queries, so no experiments have been performed on
relational queries.

The tests reveal the performance when the frequency of event are changed, the
influence of the time window size, if the structure of the query is important for the
result, among this the Kleene star and how the models perform when the input data
has characteristics that change over time. The last test demonstrate the effect of the
pass-down optimization.

6.1 Technical specification

The implementation has been done using the JAVA programming language from Sun
version 1.6, running on an Ubuntu 9.10 Linux operating system, kernel version 2.6.31-
16-generic.

The scanner was created using the tool JFlex [21], and the parser was made using
CUP [24]. The Eclipse IDE was used during development, JUnit used for testing,
and R for producing graphs.

All experiments have been performed on a Intel dual core CPU 3.00GHz with 2
GB RAM, where the JAVA VM was allowed to use 1 GB. The implementation is
threaded such that the inputting process(es) runs separate threads, and the actual
DSMS runs a single thread.

The Range tree implementation has been done by stud.scient Magnus Gausdal
Find as a project in the course “Geometric algorithms” and modified to be able to
handle data. The MyList implementation is a modified version of the JAVA API’s
Linked List in order to make concatenation O (1). All other code has been developed
by the author.

In all of the tests, the events are allowed to enter the system as fast as possible,
generated in a separate thread. In order to have the same work done in all cases, the
events are timestamped with one second between each. All queries use the “select
all” projection, as the conversion from tuple to event is the same for the NFA model
and the tree model, so the two models would perform the same work.
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a b c d e f

(a)

a b c d e f

(b)

Figure 6.1: Overlapping and non-overlapping predicates.

Tests have been conducted on which predicate location method (section 3.5.4)
performs best, but the difference was not measurable. In all tests described, the
“precomputed cube” method is used. A pattern of length six has been chosen for
testing, as this has a total of 50 different tree shapes. Had a pattern of length three
been chosen, only two shapes would have been possible, likely making the left-deep
tree optimal in half the situations.

The code for the implementation can be found here:
http://www.imada.sdu.dk/~kok04/speciale/code.zip

6.2 Relative Frequency

This test will show how the NFA and the tree will perform when the frequency of
events in a pattern are uneven. A pattern of length six will be used, and the data
chosen at random, so no particular shape of a tree will be favored. Query 5 and 6
will be used in this test. Query 5 has overlapping parameterized predicates, see figure
6.1(a), and query 6 has non-overlapping predicates, figure 6.1(b). Both queries will
be used with time windows of 20 and 40 seconds (i.e. X ∈ {20, 40}).

In these tests, the schema of the input is (name, price) and price ∈R {0, 1}. The
selectivity of the parameterized predicates is expected to be 50%. The inputs are
grouped in pairs, so IBM and Google will be handled as the first part of the pattern,
Sun and Oracle as the middle, and Microsoft and Y ahoo as the last. All these tests
have been run with 100.000 events, averaged over ten different seeds.

Query 5 Overlapping parameterized predicates for frequency testing

SELECT *

PATTERN abcdef

FROM [RANGE X SEC] S : a,b,c,d,e,f

WHERE SKIP TIL ANY(a,b,c,d,e,f) {
a.name = "IBM" AND b.name = "Google" AND

c.name = "Sun" AND d.name = "Oracle" AND

e.name = "Microsoft" AND f.name = "Yahoo" AND

a.price = d.price AND b.price = e.price AND

c.price = f.price}
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Query 6 Non-overlapping parameterized predicates for frequency testing

SELECT *

PATTERN abcdef

FROM [RANGE X SEC] S : a,b,c,d,e,f

WHERE SKIP TIL ANY(a,b,c,d,e,f) {
a.name = "IBM" AND b.name = "Google" AND

c.name = "Sun" AND d.name = "Oracle" AND

e.name = "Microsoft" AND f.name = "Yahoo" AND

a.price = b.price AND c.price = d.price AND

e.price = f.price }

In figure 6.2, the first two events in the pattern are frequent, with the relative
frequency depicted on the x-axis, and the throughput on the y-axis. In figure 6.3 it
is the middle events in the pattern that are frequent, and in figure 6.4 it is the last
events that appear frequently.

Figure 6.2 clearly shows that the NFA spends too much time generating configu-
rations for the first states that later time out. The throughput for the NFA is poor
compared to the adaptive tree. Furthermore, it is obvious that when the triggering
event is rare, the pull-based approach is better than the push-based, as some of the
events from the first states have timed out before being processed. The throughput
is better for the shorter window size, which is expected from the smaller number of
active events in the time window.

Figure 6.3 shows a more even match between the tree based and the NFA based
model. Please note that when data is uniformly distributed, then the tree model
is superior. Only when the frequency of the data is quite skewed, the NFA based
implementation can compete with the tree based.

In figure 6.4 the trend continues: Only when the frequency of the data is very
skewed does the NFA model perform slightly better than the tree based. This is not
unexpected, as this is the best case scenario for the NFA model. Having very few
configurations in the first part of the query makes very few intermediate results that
will time out and be discarded. Asymptotically the two models look similar, unlike
in figure 6.2 where the tree model is much better.
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(a) Query 5 with 20 second time window
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(b) Query 6 with 20 second time window
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(c) Query 5 with 40 second time window
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(d) Query 6 with 40 second time window

Figure 6.2: Throughput when the first input of a query occurs frequently
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(a) Query 5 with 20 second time window
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(b) Query 6 with 20 second time window
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(c) Query 5 with 40 second time window
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(d) Query 6 with 40 second time window

Figure 6.3: Throughput when the middle input of a query occurs frequently
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(a) Query 5 with 20 second time window

1,1,1 1,1,2 1,1,4 1,1,8 1,1,16 1,1,32

20
00

00
40

00
00

60
00

00
80

00
00

ADAP−PULL
ADAP−PUSH
LEFT−PUSH
NFA

Relative event rate

T
hr

ou
gh

pu
t (

ev
en

ts
/s

ec
)

(b) Query 6 with 20 second time window
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(c) Query 5 with 40 second time window
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(d) Query 6 with 40 second time window

Figure 6.4: Throughput when the last input of a query occurs frequently
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6.3 Query Structure

In this experiment, the structure of the query will be examined. Here, structure
is the way the parameterized predicates relate to each other. Three structures are
examined: In the first, all parameterized predicates relate to the initial event (6.5(a)),
in the second, all relate to the fourth event in the pattern (6.5(b)), a middle one, and
in the last, all relate to the triggering event (6.5(c)).

a b c d e f

(a)

a b c d e f

(b)

a b c d e f

(c)

Figure 6.5: Overlapping and non-overlapping predicates.

The queries used are similar to query 5, with the time window X ∈ {20, 40} but
with the parameterized predicates changed to the ones shown in query 7, 8, and 9.
The input data is again randomly generated as (name, price), and all measurements
have been done with 100.000 events and averaged over 10 seeds.

Figure 6.6(a) shows the results when the time window is 20 seconds, with the
three different queries on the x-axis. Figure 6.6(b) displays the results with the time
window being 40 seconds.

Query 7 All predicates relate to the initial event

a.price < b.price AND a.price < c.price AND

a.price < d.price AND a.price < e.price AND

a.price < f.price

Query 8 All predicates relate to the fourth event

a.price < d.price AND b.price < d.price AND

c.price < d.price AND d.price < e.price AND

d.price < f.price

Query 9 All predicates relate to the triggering event

a.price < f.price AND b.price < f.price AND

c.price < f.price AND d.price < f.price AND

e.price < f.price

Both figure 6.6(a) and 6.6(b) show that the NFA model is inferior, especially when
the initial event is not limited by any parameterized predicates. This creates a large
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(b) With 40 second time window

Figure 6.6: Throughput when the first, middle or last event is involved in all param-
eterized predicates, i.e. the structure of the query.

family of queries, where the tree model would be preferable. It is also clear from these
figures that the left-deep shape is not always the best choice, as the adaptive tree is
superior.

6.4 Time Window

This experiment will show if the size of the window has any effect on the pattern query
evaluation. Queries 10 and 11 are used, with X ∈ {5, 10, 15, 20, 25, 30, 40, 45, 50}.
These queries have independent parameterized predicates i.e. the attributes of each
parameterized predicate is only involved in that single predicate. One query has
overlapping and one has non-overlapping predicates. The data is randomly generated,
now with the schema (name, price, type, volume).

Query 10 Query to test if the size of the time window has an effect (non-overlapping
predicates).

SELECT *

PATTERN abcdef

FROM [RANGE X SEC] S : a,b,c,d,e,f

WHERE SKIP TIL ANY(a,b,c,d,e,f) {
a.name = "IBM" AND b.name = "Google" AND

c.name = "Sun" AND d.name = "Oracle" AND

e.name = "Microsoft" AND f.name = "Yahoo" AND

a.volume < b.volume AND c.price < d.price AND

e.type < f.type }
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Query 11 Query to test if the size of the time window has an effect (overlapping
predicates.

SELECT *

PATTERN abcdef

FROM [RANGE X SEC] S : a,b,c,d,e,f

WHERE SKIP TIL ANY(a,b,c,d,e,f) {
a.name = "IBM" AND b.name = "Google" AND

c.name = "Sun" AND d.name = "Oracle" AND

e.name = "Microsoft" AND f.name = "Yahoo" AND

a.volume < d.volume AND c.price < f.price AND

b.type < e.type }

Figure 6.7(a) displays the result of query 10 and figure 6.7(b) shows the result of
query 11. The throughput for both models decreases as the window size increases.
Why the NFA model performs well with the short time windows and the overlapping
query is a bit curious. The throughput is however clearly the best for the tree model.
The graphs in figure 6.7 shows percent increase of throughput with the tree based
model compared to the NFA based model. This is quite substantial, especially for
long time windows.

5 10 15 20 25 30 35 40 45 50

10
00

00
30

00
00

50
00

00
70

00
00

ADAP−PULL
ADAP−PUSH
LEFT−PUSH
NFA

Time window

T
hr

ou
gh

pu
t (

ev
en

ts
/s

ec
)

(a) Overlapping

  

5 10 15 20 25 30 35 40 45 50

0
10

00
00

30
00

00
50

00
00

ADAP−PULL
ADAP−PUSH
LEFT−PUSH
NFA

Time window

T
hr

ou
gh

pu
t (

ev
en

ts
/s

ec
)

(b) Non overlapping

Figure 6.7: Influence of window size on throughput with random data.
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Figure 6.8: Percentage of throughput, that the pull based adaptive tree model is
better than the NFA model using random data.

6.5 Kleene Star

To test how pattern queries with repetition, Kleene star, influence the throughput,
queries 12 having one Kleene star and 13 having two are used. The predicate on the
event with the Kleene star is expecteed to be 0.1, as the number of results would
otherwise become too large to handle in the memory available.

Query 12 Query to test a single Kleene star in a pattern.

SELECT *

PATTERN ab+cdef

FROM [RANGE X SEC] S : a,b,c,d,e,f

WHERE SKIP TIL ANY(a,b,c,d,e,f) {
a.name = "IBM" AND b.name = "Google" AND

c.name = "Sun" AND d.name = "Oracle" AND

e.name = "Microsoft" AND f.name = "Yahoo" AND

a.volume < d.volume AND c.price < f.price AND

b.price < 100 }
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Query 13 Query to test a two Kleene stars in a pattern.

SELECT *

PATTERN ab+cde+f

FROM [RANGE X SEC] S : a,b,c,d,e,f

WHERE SKIP TIL ANY(a,b,c,d,e,f) {
a.name = "IBM" AND b.name = "Google" AND

c.name = "Sun" AND d.name = "Oracle" AND

e.name = "Microsoft" AND f.name = "Yahoo" AND

a.volume < d.volume AND c.price < f.price AND

b.price < 100 AND e.price < 100 }

Figure 6.9 shows a graph of the throughput of the two queries, with the size of
the time window on the x-axis. There is no indication of the tree based models not
being able to handle the Kleene plus in a satisfactory manner. The throughput for
the tree based models is better than for the NFA, and the pull based propagation
strategy seems to perform slightly better than the push based.
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(a) One Kleene star
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(b) Two Kleene stars

Figure 6.9: Throughput of the different implementations for queries including Kleene
star

6.6 Data Changing Over Time

The random data used in the preceeding experiments, does not favor any parameter-
ized structure, since once a structure for the tree has been selected, checking for a
different structure will be unnecessary. In this experiment, the data will change over
time to having three different characteristics. The queries used are 10 and 11.

Unless specified below, volume, type, price ∈R [0 : 1000]
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1. batch If name = ”IBM” then volume is 950. For query 10 the predicate
a.volume < b.volume will have an expected selectivity of 0.05, and for query 11
the predicate a.volume < d.volume will have an expected selectivity of 0.05.

2. batch If name = ”Google” then type = 950, so in query 11 the selectivity for
the predicate b.type < e.type will have an expected selectivity of 0.05. If
name = ”Y ahoo” then type = 50 causing the predicate e.type < f.type to
get an expected selectivity of 0.05 in query 10.

3. batch If name = ”Sun” then price = 950. In query 10 the predicate c.price <

d.price will have an expected selectivity of 0.05, and for query 11 the predicate
c.price < f.price will have an expected selectivity of 0.05.

Each batch will consist of 5000 events, and predicates not mentioned above will have
an expected selectivity of 0.50. The batches are then repeated in circular order until
a total of 100.000 events have been processed.
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Figure 6.10: Influence of window size on throughput with data that changes charac-
teristics over time.

Figure 6.10 shows the results from the changing data test. Especially with the
overlapping predicates does the adaptive tree perform better than the left-deep tree
and the NFA.

It is clear, when the percentages of figure 6.7(a) are compared to the percentages
of figure 6.10(a) that the adaptive tree outperforms the NFA model, once the data
has features that would make different tree shapes optimal.
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Figure 6.11: Percentage of throughput that the pull based adaptive tree model is
better than the NFA model with data that changes characteristics over time

6.7 Pass-down Optimization

The last test in this thesis will inspect the pass-down optimization described in sec-
tion 4.4. The two queries 14 and 15 will be used, with data having the schema
(name, type, volume, price). The optimization should only have an effect when the
time between triggering events are longer than the timewindow. This can be acom-
plished by the last event in the pattern being rare, so the data in this test is skewed,
making the last events increasingly infrequent.

Each query has run with ten seeds, each time with 100.000 events input.

Query 14 Query to test the pass-down optimization.

SELECT *

PATTERN abcdef

FROM [RANGE 50 SEC] S : a,b,c,d,e,f

WHERE SKIP TIL ANY(a,b,c,d,e,f) {
a.name = "IBM" AND b.name = "Google" AND

c.name = "Sun" AND d.name = "Oracle" AND

e.name = "Microsoft" AND f.name = "Yahoo" AND

a.volume < d.volume AND c.price < e.price AND

b.type < f.type }
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Query 15 Query to test the pass-down optimization (large output).

SELECT *

PATTERN abcdef

FROM [RANGE 50 SEC] S : a,b,c,d,e,f

WHERE SKIP TIL ANY(a,b,c,d,e,f) {
a.name = "IBM" AND b.name = "Google" AND

c.name = "Sun" AND d.name = "Oracle" AND

e.name = "Microsoft" AND f.name = "Yahoo" AND

b.type < f.type }

The result of the test is displayed in figure 6.12. As expected, the pass-down
optimization performs better than the standard tree with the pull propagation plan,
when the last event in the pattern does not appear too frequently.
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(b) Query 15

Figure 6.12: Influence of the pass-down optimization on skewed data.
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Chapter 7

Conclusion

Two different approaches for evaluating pattern queries in a DSMS have been studied
and compared theoretically and experimentally. The NFA based approach known
from litterature and a tree based approach partly developed in this thesis.

The theoretical results show that the NFA based model is not suitable for handling
relational queries. Furthermore, the tree based evaluation should perform at least as
well as the NFA based evaluation on pattern queries.

A prototype DSMS has been developed and used for testing the theoretical re-
sults. The experiments performed consolidate the theoretical results: The tree model
performs at least as well as the NFA based.

Optimizations have been developed, implemented, and tested showing promising
results for the tree based model.

7.1 Suggestions for Further Study

This thesis has left some topics to be considered.

· Allowing parenthesis with Kleene Plus, so more than a single event can be re-
peated. It is quite possible that the tree based model could handle this elegantly,
by allowing sequence joins with tuple input to handle Kleene Star.

· How can the pull based approach be included in the tree shape calculation?
And should the pass-down optimization be considered in the calculation?

· How the two criteria in the pass-down procedure trade off?
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Appendix A

Pass-down in Left-deep Tree

Assume the root has a parameterized predicate (ag, op, an) having selectivity λg,n ∈
[0; 1]. It is then clear that the tree a1 . . . ag−1 is not affected by the pass-down strategy,
so the cost of this part of the tree is the same for both strategies and can therefore
be ignored.

The intervals to consider is between events that match an, as this is the only times
where output is produced, the time of such an interval is denoted f .

First some basic thoughts about comparing the two strategies. Consider an in-
put sequence: ei|ei+1ei+2 . . . ej |ej+1ej+2 . . . ek|ek+1 where ei, ej and ek matches an.
If the time between ej and ek is less than the timespan of the query, the buffers
|ag+1|r · · · |an−1|r could still have some of the events ei · · · ej which isn’t the case for
the pull strategy, which have emptied those buffers at the time of arrival of ej , prop-
agating all possible events upwards. The two cases are treated separately. Note that
the part of the tree a1 · · · ag−1 can be ignored, as this will be exactly the same for
both strategies. The following arguments only apply to the part of the tree where
the two strategies are different. Notation for the arguments below is found in table
A.1 Note that there is no explicit notation for the output, since the output of the
operator handling ai is the same as |ai+1|l.

To compare the cost, the work spent for producing output is estimated, thus
checking how many comparisons the tree makes.

|ag|r The size of the right input buffer of the operator treating ag

|ag|l The size of the left input buffer of the operator treating ag

λag
Selectivity for the static predicate(s) on ag

λag,an
Selectivity for the parameterized predicate between ag and an

r rate of events per seconds in the input

d Duration of the time window in the query

f Time between two events matching an

Table A.1: Definitions for the analysis
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a1 a2

ag

ag+1

an

Figure A.1: Example of tree for reference

Firstly, the case where f ≥ d

Regardless of the strategy used (of pull and pass-down) the following estimate can be
made assuming uniform rate of events and uniform distribution of the data:

|as|r ≈ d · r · λas
∀ 1 < s < n

For the pull strategy the following approximation can be made:

|ag+1|l ≈
1

2
|ag|l · |ag|r ·

g−1
∏

i=1

λai,ag

where the term of 1
2

comes form the time constraint of two events (one must come
before the other).

For the pass-down strategy the approximation becomes:

|ag+1|l ≈
1

2
|ag|l · |ag|r · λag ,an

·

g−1
∏

i=1

λai,ag

In the layer above in the tree, for both strategies, the approximation of the left
input becomes:

|ag+2|l ≈
1

2
|ag+1|l · |ag+1|r ·

g
∏

i=1

λai,ag+1

The only difference is the term λag ,an
hidden in the left input.

Adding all layers from the ag operator and above together, the factor that sets
the two strategies apart is the constant λag ,an

, in favor of the pass-down strategy.
To sum up, if at most one output triggering event comes in the span of the query
time window, the pass-down strategy will perform better than the pull (although not
asymptotically).



61

Secondly, the case where f < d.

Intuitively for pull, the input queues from the right are smaller, since they can be
emptied when a pull is performed, propagating all results in the tree.

Since the pull now is made more often, the size of the right input queues can be
estimated differently

|as|r ≈ f · r · λas
∀ 1 < s < n

For the pull strategy:

|ag+1|l ≈
1

2
|ag|l · f · r · λag

·

g−1
∏

i=1

λai,ag

and

|ag+2|l ≈
1

2
|ag+1|l · f · r · λag+1 ·

g
∏

i=1

λai,ag+1

For the pass-down strategy:

|ag+1|l ≈
1

2
|ag|l · d · r · λag

· λag ,an
·

g−1
∏

i=1

λai,ag

and

|ag+2|l ≈
1

2
|ag+1|l · f · r · λag+1 ·

g
∏

i=1

λai,ag+1

From this it is clear that the difference between the two strategies is a term of f

in the pull from a term of d · λag ,an
.

The conclusion is therefore, letting q be a constant determining the difference in
implementation, if f < q ·d ·λag ,an

the pull strategy should be used. Otherwise it will
be beneficial to use the pass-down strategy.
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